skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kou, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1(mean ± s.e.), CH4uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4uptake by Arctic soils, providing a negative feedback to global climate change. 
    more » « less
  2. Abstract Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback. 
    more » « less
  3. Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects. 
    more » « less